ZOEAL LARVAE OF MACROPHTHALMUS SETOSUS H. MILNE-EDWARDS, 1852

AND M. PUNCTULATUS MIERS, 1884 (DECAPODA, OCYPODIDAE).

D.R. Fielder \& J.G. Greenwood
Department of Zoology
The University of Queensland

Abstract

All five zoeal llarvae of Macrophthatmus setosus H. MilneEdwards, 1852 and the first zoeal larva of M. punctulatus Miers, 1884 sultured in the laboratory are described and illustrated. Comparisons are made with previously published descriptions of macrophthalmine larvae and on the basis of larval characteristics, the taxonomic status of M. hirtipes (Jacquinot, 1853) is questioned.

INTRODUCTION

Barnes (1967) recorded twelve Macrophthalmus species from Australia. The first zoeal larvae of three of these species i.e., M. japonicus (by Aikawa 1929) and M. latreillei, M. pacificus, (by Hashmi 1969) have been described from Japan and Pakistan respectively. Larvae of the nine other species are unknown, and no Macrophthalmus larvae have previously been described from Australian material. The present paper describes zoeal stages of M. setosus and M. punctulatus from eastern Australia.

Snelling (1959), in her study of the Brisbane River crab fauna. recorded three Macrophthalmus species i.e., M. setosies, M. pumetulatus and M. pacificus. Subsequently Snelling's M. pacificus has been reidentified as juvenile M. setosus (Barnes 1967).
M. setosus and M. punctulathes are endemic to Australia (Barnes 1967), having a rather restricted distribution on the east coast, from south of the Tropic of Capricorn to central New South Wales. Both species are relatively common in the Brisbane River estuary. M. setosus is numerically dominant where it occurs, and is found under stones or on damp soft mud between L.W.N. and L.W.S. from the river mouth upstream for c. 22 km where salinities are c. $10-30 \%$. M. punctulatus burrows into firm mud between H.W.N. and L.W.N. from the mouth of the river upstream for c. 11 km where salinities are c . 18-35\%. It seldom occurs in large numbers.

The present paper is one of a series designed to describe the brachyuran larvae of an Australian estuarine assemblage.

MATERIALS AND METHODS

Ovigerous females were collected from the banks of the Brisbane River ($27^{\circ} 23^{\prime} \mathrm{S}, 153^{\circ} 9^{\prime} \mathrm{E}$) during summer. Captured crabs were held individually in plastic containers (160 mm square X 220 mm deep) filled to a depth of 50 mm with pasteurized seawater having a salinity of 20\%0 and at $25^{\circ} \mathrm{C}$ in an artificial light/dark regime of $12 / 12$ hours. Each container was provided with a 90 mm square raft of plastic gauze which the crabs could use as a shelter and emergence platform. Wates was changed twice daily until surface mud and faecal material had been lost, and then once daily.

Newly hatched zoeae were ransferred to similar plastic containers in batches of c, 2000. Rearing water (salinity 20%) was renewed each morning when larvae were fed. Initially, freshly hatched Artemia nauplii were provided as food. but no zoeae moulted on this diet, the Artemia nauplii apparently being too active for the small crab larvae to liandle. A complete zoeal scries of Macrophthalmus setosws was subsequently obtained by providing Brachiomus sp. as food.

Samples of each larval stage were preserved in 4\% neutral formalin. Dissections were made under a Wild M5 microscope and drawings were made using a Wild M20 microscope with drawing tube.

Figures of zoeal stage II and IV appendages have not been included since these appendages do not differ markedly from those of the preceding stages. If required these figures can be obtained from the authors.

Setal nomenclature is based in that used by Bookhout and Costlow (1974). Measurements of
larvae and tabular presentation ol appendage segmentation and setation follow that used previously by the present authors, e.g., Greenwood and Fielder (1980).

RESULTS

Macrophthalmus (Mopsocarcinus) punctulatus Miers, 1884
Zoea 1 (Fig. IA-1)
First stage zoeae have, as yet, not been reared to later stages. Size and proportional measurements are given in Table 1.
Carapace smooth and globose. Dorsal and lateral spines absent. Rostrum very short and evenly tapered. Eyes immobile.
Abdomen with five free somites, sixth fused to telson; second and third abdominal somites each with a pair of dorso-lateral projections. Posterolateral margins of all abdominal somites without spines. Paired setules postcro-dorsally on somites 2-5. Telson width similar to that of last abdominal somite, telson length (medial) c. 1.2 times width; posterior margin transverse with $3+$ 3 subequal biplumose setae. Telson rami short, c. 0.5 times telson length, 2 times length of posterior
setae, each ramus with two longitudinal rows of setules, but no dorsal or lateral spines.
Structure and setation of appendages as given in Fig. IC-1 and Table 2.

Macrophthalmus (Mareotis) setosus H. Milne Edwards, 1852
Five zoeal stages were reared before cultures failed. However, the well developed thoracic appendages and pleopods of the fifth zoeal stage indicate that this is the last stage before megalopal transition. Each zoeal stage was completed in c. 8 days. Size and proportional measurements of zoeae are given in Table 1. Dorsal spine and rostral lengths are 0.6 to 0.7 times the carapace length in all zoeal stages. The dorsal spine is almost equal in length to the rostrum in all zoeal stages for which multiple measurements are available.

Zoea 1 (Figs 2A, B; 3A-G)

Carapace smooth and globose with dorsal and rostral but no lateral spines. Dorsal spine uniformly tapered with a slight posterior curvature. Rostrum smooth, evenly tapered and straight. Eyes immobile.
table 1. Dimensions of Varlous Featlres of the Zoeae of Macrophthaluus setosus and M. punctulatus. All Measurements are in mm and Unless Otherwise Stated. Mean Values, for 10 Individuals of Each Stage, Are Given with Standard Deviation in Brackets.

	Macrophthalmus setosus					M. punctulatus
Feature	Zoea I	Zoea II	Zoea II]	Zoea IV	Zoea V*	Zoca I
Spine to spine tip	$0.68(0.02)$	$0.81(0.04)$	$1.10(0.15)$	$1.38(0.02)$	1.58	-
Range	$0.64-0.72$	$0.76-0.86$	$0.96-1.30$	$1.36-1.40$		
Carapace (A)	$0.32(0.02)$	$0.41(0.01)$	$0.51(0.06)$	$0.69(0.02)$	0.80	$0.31(0.02)$
Range	$0.30-0.34$	$0.40-0.42$	$0.42-0.58$	$0.66-0.70$		$0.28-0.34$
Dorsal Spine (B)	$0.23(0.01)$	$0.24(0.02)$	$0.34(0.05)$	$0.46(0.02)$	0.54	-
Range	$0.20-0.24$	$0.22-0.26$	$0.28-0.40$	$0.44-0.48$		
Rostrum (C)	$0.22(0.02)$	$0.27(0.02)$	$0.35(0.05)$	$0.43(0.01)$	0.44	$0.05(0.01)$
Range	$0.20-0.24$	$0.26-0.30$	$0.32-0.42$	$0.42-0.44$		$0.04-0.06$
Antenna	c. 0.10	c. 0.15	$0.18(0.02)$	$0.28(0.01)$	0.32	$0.10(0.01)$
Range			$0.16-0.20$	0.28		$0.08-0.12$
Ratio B/A	0.72	0.59	0.67	0.70	0.68	-
Ratio C/A	0.69	0.66	0.69	0.62	0.55	0.17
Ratio B/C	1.05	0.89	0.97	1.07	1.23	-

[^0]

Fig. 1: Macrophthalmus punctulatus. A. first zoea lateral view; B. first zoea posterior view; C. first antenna; D. second antenna; E. first maxilla; F. second maxilla; G. first maxilliped; H. second maxilliped; 1. telson.
table 2. Segmentation and Setation of Appendages of Zoeal Stages of Macrophthalmus setosus and M. punctulatus (A = Aesthete; $\mathrm{S}=\operatorname{Simple} ; \mathrm{SP}=\operatorname{Sparsely}$ Plumose; $\mathrm{P}=$ Plumose; $\mathrm{HP}=\mathrm{H}$ ighly Plumose; PD

Appendage		Zoea I	Macrophthalmus setosus			M. punctulatus	
			Zoea II	Zoea IlI	Zoea IV	Zoea V	Zoea I
ANT. I	Terminal	3A, 1S	6A	4A	5A	5A	3A, 1S
	Subterminal	0	0	0	1A	4A	0
ANT. II	Peduncle	10-15S	17-23S	18-25S	18-25S	12-17S	many S
	Exopod	1S	1S	1S	1S	1 S	1 PD , many S
	Endopod	-	-	-	present	present	-
MAX. I	Coxa	0	1HP	1HP	1HP, 1PD	1HP, 1PD	0
	Coxal end.	5PD	5PD	5PD	6-7PD	11 PD	5PD
	Basal end.	3SP, 1PD	4SP, 3PD	4SP, 3PD	6-7PD	1-2S, 9PD	2SP, 2PD
	Endopod seg. prox.	1S	1 S	1S	1 S	1 S	1 S
	seg. 2	5 PD	5PD	5PD	5PD	5PD	5PD
MAX. II	Coxal end. prox.	4PD	4PD	4PD	6PD	$5 \mathrm{HP}, 2 \mathrm{PD}$	4PD
	dist.	3 PD	3PD	3PD	4PD	4HP, 1PD	3PD
	Basal end. prox.	5PD	5PD	5PD	6 PD	7 PD	5PD
	dist.	4PD	4PD	4PD	7 PD	9-10PD	4PD
	Endopod	4PD	4PD	4 PD	4PD	4 PD	4PD
	Scaphognathite	5HP	8HP	14 HP	c. 29 HP	c. 30 HP	5 HP
MAX'PED 1	Basis	9PD	9PD	9PD	10-11PD	15PD	9 PD
	Endopod seg. prox.	1PD, 1S	1PD, 1S	1PD, 1S	$1 \mathrm{PD}, 1 \mathrm{~S}$	1PD, 1S	1PD, 1S
	seg. 2	1PD, 15	1PD, 1S	1PD, 1S	$1 \mathrm{PD}, 1 \mathrm{~S}$	$1 \mathrm{PD}, 1 \mathrm{~S}$	1PD, 1S
	seg. 3	1PD	1 PD	1 PD	2 PD	2 PD	1 PD
	seg. 4	2PD	2PD	2PD	2 PD	2PD	2 PD
	seg. 5	4PD, 1S	5PD	5 PD	6 PD	6 PD	5 PD
	Exopod	4HP	6 HP	8 HP	10 HP	10 HP	4HP
MAX'PED. II	Basis	2PD, 2S	2PD, 2S	2PD, 2S	4PD	4 PD	4PD
	Endopod seg, prox.	0	0	0	0	0	
	seg. 2	1S	1PD	1 PD	1 PD	1 PD	1 PD
	seg. 3	3PD, 3S	3PD, 3S	$3 \mathrm{PD}, 3 \mathrm{~S}$	4PD, 2S	8PD	6 PD
	Exopod	4HP	6 HP	8 HP	10 HP	10 HP	4HP

Abdomen with five free somites, sixth fused to telson; second and third abdominal somites witha pair of dorso-lateral projections. Ahdominal sunites $2-5$ with very small postero-lateral spines. Praired setules postero-dorsally on somites 2-5. Telson width similar to that of last abdominal somite, telson length (medial) c. equal to width: poverior inargin with $3+3$ biplumose setate. Telson rami c. equal to telson length, twice length of posterior setae, each ramus will two longitudinal rows of setules but no dorsal or lateral spines.
Structure and setation of appendages as given in Fig. 3A-C and Table 2.

Zors 11 (Fig. 2C)

Pastero-lateral spines on somites $2-5$ now pronounced. Eyes mobile, no evidence of thoracie limb buds. Sixth abdominal somite still fused to Eelsun. Telson now with $4+4$ biphomose setae between rami.
Setation ol appendates as given in Table 2
ZoEA 111 (Figs 2I), 4A-F)
Sixth abdominal somite still fused to selson.
Structure and setation of appendages as given in Fig, 4A-F and Table 2.

ZOLA IV (Fig. 2E)

Perclopod buds not yet apparchu, Sixth abdominal somite now separate lrom telson. Pleopod buds now present on abdominal somues 2-S. tiny uropod buds present on sixth abdominal somite.

Selation of appendages as given in 'lable 2.
ZOEA: V (Figs 2F, 5A-F)
Third maxillipeds and pereiopods well developed but not yot setose. Plenpods and uropods well developed.
Structure and setation of appendages as given in Fig. 5A-F and Table 2.

DISCUSSION

The larvac of M. setosus and M. punctufatus have been difficult to rear. Gravid females carry later quantities of mud on their surfaces which fouls aquarium water during the first few days of captivity. They also produce large quantities of "muctdy' facces during this period which also fouls aquarium water. Full term eggs often did not hatch or were aborted during these first higys, and mortality of hatched larvae was very high. A much greater problem was posed by the small size of the first zocae. Freshly hathed Aptemio nauplii cannot be used as food as they are too large and too active. Hashmi (1906) dict nes mention zocal stages later than the liest, for athe
five species of Macrophthalmus he hatched. Apparently Artemior nauplii provided by Hashmi as a sole food sumbe were also not suitable in those cases.

In the present investigation, all zoeal stages (but no megalopae) ol' M. scoosus have been reared using the much smaller rotifor, Brachionus sp. as a food source. It has not yet been possibls to rear M. punctulatus beyond the first zoeal stage although repeated attempts have been made nlsing Brachiontes as food.

Based on the rather gross features ol size and carapace spination, lirst stage qneae of the genus Maerophthalmus are quite diverse. Like those of M. serosus $(=0.32 \mathrm{~mm})$ and M. punctulatus $(=$ 0.31 mm) described here, the first zoeae of mose other Macrophthalmus species so far described are small and have carapace lenglhs of less than 0.4 mm , i.c. M. depressus $=0.38 \mathrm{~mm}$ (Aikava 1929; Hashmi 1969: Riee 1975); M. dilatatus $=$ 0.38 mm (Aikawa 1929); M. crmitus $=0.29 \mathrm{~mm}$, M. Iatreillei $=0.30 \mathrm{~mm}$, M. sulcatus $=0.34 \mathrm{~mm}$, M. pacificus = 0.38 mum (Hashmi 1964). On the other hand the first zocal stage carapace length of M. hirtipes (Weat 196R) is telatively large at 0.45 nm . The most consistent tomplement of carapace spines so far described is dorsal . rostral. However, two aneciex, i.c., M. crinluas and M. hirtipes have lateral carapace spines as well and M. punctulutus (present study) lias: as rostral spine only.

Rice (1975) used the setation of maxillute, maxilla and second maxilliped endopods to separate ocypodid zoeae into distinct groups. which corresponded to the accepted sub-families based on adult morphology. Rice's (1.c.) larval Macrophhalmus setation with corresponding sctation of M. setowes and M. punctulatus is shown in Table 3. It can be secn that zoeal larvae of both species conform closely to those listed by Rice.

Based on the presence of targe lateral carapace spines and the absence of dorso-taicral knobs on abdominal somite 3, Fielder and Greenwood (1985) suggested that the larvar of M. hirtijes were not in the mainstream of Macrophthatmus larvae, but were dlosely allied 10 those of Heloecius cordiformis (now placed in a new subfamily. Heloecinae), and that the taxomontic status of M. hirripes should be investigated. This suggestion is further supported when the telson and carapace length of zoeal larvac of M. hirtipes (described by Wear, 1968) are compared with those ol M. setosus and M. punctulatus, and other known Macrophthalmus larvae. The distance between the distal tips of the furcal rami

Table 3. Selected Firsi Zoeal Mouthparts Setation and Dorsoh tateral Abdominal Projections of the Sub famlly Macrophthalminae (Rice 1980), Macrophtillamus punctuius and M. setosers (This Study).

	MAX. 1 Endop.	MAX. II		MAX'PED 1 Endop. basal seg.	MAX'PED II Endop.	ABDOMEN Dorso-lateral knobs Som. 2 Som. 3	
		Endop.	Scaphog.				
Macrophthalminae	1, 4/6	$2+2$	$4+1$	2	0/1,1,5/6	1	1
M. punctulatus	1, 5	$2+2$	$4+1$	2	0, 1, 6	1	1
M. setosus	1, 5	$2+2$	$4+1$	2	0.1 .6	1	1

of M. hirtipes zoeae is c. 3.0 times the width of the telson base and the telson length from base to furcal notch is c. 0.28 times the total telson length. Comparable figures for the other Macrophthalmus zoeae are not more than 1.4 and not less than 0.43 respectively. M. hirtipes zoeae are also substantially larger than other known Macrophthalmus zoeae.

One other species from the sub-family Macrophthalminae has been collected from the Brisbane River (Snelling, 1959), i.e., Australoplax iridentata. It is intended that zoeal larvae of this species will be described in a future paper. Thus it is premature, at this time, to discuss differentiating features of species within the subfamily on a local basis.

ACKNOWIEDGEMENTS

We are most grateful to Robin Hutchings for technical assistance and to Ian Smith of New South Wales State Fisheries for providing starter cultures of Brachionus sp. The Australian Research Grants Committee and the University of Queensland provided research grants which we also gratefully acknowledge.

LITERATURE CITED

Alkilwa, H., 1929. On the larval forms of some Brachyura. Rec. oceanogr. wks Jup. 2: 1-55.

BaRnes, R.S.K., 1967. The Macrophthalminae of Australasia; with a review of the evolution and morphological diversity of the type genus Macrophthalmus (Crustacea : Brachyura). Trans. Zool. Soc. Lond. 31: 195-262.
Boonhout, C.G., and Costl.ow, .1.D., Jnr., 1974. Larval development of Portunus spinicarpus reared in the laboratory. Bulletin of Marine Science, Coral Gables. 24: 20-51.
Fiet der, D.R., and Greenwond, J.G., 1985. The systematic position of Heloecius cordiformis (H . Milne-Edwards, 1837) (Decapoda, Ocypodidae) as revealed by larval morphology. Crustaceana 48 : 244-8.
Greenwond, J.G., and Fielder, D.R., 1980. The zoeal stages and megalopa of Charyhdis callianassa (Herbst) (Decapoda : Portunidae), reared in the laboratory. Proc. R. Soc. Qd 91: 61-76.
Hashm, S.S., 1969. Studies on larval Ocypodidae (Macrophthulmus) hatched in the laboratory (Decapuda : Crustacea). Pak. J. Sci. Res. 21: 50-6.
RICE, A.L., 1975. The first zoeal stages of Cancer pagurus L., Pinnotheres pisum (Pennant) and Macrophthalmus depressus Rüppell (Crustacea, Decapoda, Brachyura). Bull. Br. Mus. mat. Hist. (Zool.). 28: 237-47.
Snelling, B., 1959. The distribution of intertidal crabs of the Brisbane River. Aust. J. mar. Freshwat. Res. 10: 67-83.
Wear, R.G., 1968. Life history studies on New Zealand Brachyura. 3. Family Ocypodidae. First stage larva of Hemiplax hirtipes (Jacquinot, 1853). N.Z. J. mar. Frestiwat. Res, 2: 698-7(17.

Fig. 2: Macrophthalmus setosus. A. first zoea lateral view; B. first zoea posterior view; C. second zoea; D. third zoea; E. fourth zoea; F. fifth zoea.

Fig. 3: Macrophthalmus setosus first zoea appendages. A. first antenna; B. second antenna; C. first maxilla; D. second maxilla; E. first maxilliped; \mathbf{F}. second maxilliped; G. telson.

Fig. 4: Macrophthalmus setosus third zoea appendages. A. first antenna; B. second antenna; C. first maxilla; D. second maxilla; E. first maxilliped; F. second maxilliped; G. telson.

[^0]: * one measurement only

